Degree 1 elements of the Selberg class
نویسندگان
چکیده
منابع مشابه
Degree 1 Elements of the Selberg
In [5] A. Selberg axiomatized properties expected of L-functions and introduced the “Selberg class.” We recall that an element F of the Selberg class S satisfies the following axioms. Axiom 1. In the half-plane σ > 1 the function F (s) is given by an absolutely convergent Dirichlet series ∑∞ n=1 a(n)n −s with a(1) = 1 and a(n) ≪ n for every ǫ > 0. Axiom 2. There is a natural number m such that ...
متن کاملStrong Multiplicity One for the Selberg Class
In [7] A. Selberg axiomatized properties expected of L-functions and introduced the “Selberg class” which is expected to coincide with the class of all arithmetically interesting L-functions. We recall that an element F of the Selberg class S satisfies the following axioms. • In the half-plane σ > 1 the function F (s) is given by a Dirichlet series ∑∞n=1 aF (n)n with aF (1) = 1 and aF (n) ≪ǫ n ...
متن کاملOn the Zeros of Functions in the Selberg Class
It is proved that under some suitable conditions, the degree two functions in the Selberg class have infinitely many zeros on the critical line.
متن کاملOn the Structure of the Selberg Class, Iii: Sarnak’s Rigidity Conjecture
We further recall that under Selberg orthonormality conjecture, has unique factorization into primitive functions, the only primitive function with a pole at s = 1 is the Riemann zeta function ζ(s), and Fθ(s) is a primitive function if θ ∈R and if F ∈ are primitive and entire (see [4, Section 4]). We say a primitive function F ∈ is normal if θF = 0. Assuming Selberg orthonormality conjecture, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expositiones Mathematicae
سال: 2005
ISSN: 0723-0869
DOI: 10.1016/j.exmath.2005.01.013